Satellite
This article's introduction section may not adequately summarize its contents. To comply with Wikipedia's lead section guidelines, please consider expanding the lead to provide an accessible overview of the article's key points. (March 2009)
This article is about artificial satellites. For natural satellites, also known as moons, see Natural satellite.
Satellites and Satalite redirect here. For the Canadian reggae band, see Sattalites.
For other uses, see Satellite (disambiguation).
A full size model of the Earth observation satellite ERS 2In the context of spaceflight, a satellite is an object which has been placed into orbit by human endeavor. Such objects are sometimes called artificial satellites to distinguish them from natural satellites such as the Moon.
History
Early conceptions
The first fictional depiction of a satellite being launched into orbit is a short story by Edward Everett Hale, The Brick Moon. The story is serialized in The Atlantic Monthly, starting in 1869.[1][2] The idea surfaces again in Jules Verne's The Begum's Millions (1879).
In 1903 Konstantin Tsiolkovsky (1857–1935) published The Exploration of Cosmic Space by Means of Reaction Devices (in Russian: Исследование мировых пространств реактивными приборами), which is the first academic treatise on the use of rocketry to launch spacecraft. He calculated the orbital speed required for a minimal orbit around the Earth at 8 km/s, and that a multi-stage rocket fueled by liquid propellants could be used to achieve this. He proposed the use of liquid hydrogen and liquid oxygen, though other combinations can be used.
In 1928 Slovenian Herman Potočnik (1892–1929) published his sole book, The Problem of Space Travel — The Rocket Motor (German: Das Problem der Befahrung des Weltraums — der Raketen-Motor), a plan for a breakthrough into space and a permanent human presence there. He conceived of a space station in detail and calculated its geostationary orbit. He described the use of orbiting spacecraft for detailed peaceful and military observation of the ground and described how the special conditions of space could be useful for scientific experiments. The book described geostationary satellites (first put forward by Tsiolkovsky) and discussed communication between them and the ground using radio, but fell short of the idea of using satellites for mass broadcasting and as telecommunications relays.
In a 1945 Wireless World article the English science fiction writer Arthur C. Clarke (1917-2008) described in detail the possible use of communications satellites for mass communications.[3] Clarke examined the logistics of satellite launch, possible orbits and other aspects of the creation of a network of world-circling satellites, pointing to the benefits of high-speed global communications. He also suggested that three geostationary satellites would provide coverage over the entire planet.
History of artificial satellites
Further information: Timeline of artificial satellites and space probes
See also: Space Race
The first artificial satellite was Sputnik 1, launched by the Soviet Union on 4 October 1957, and initiating the Soviet Sputnik program, with Sergei Korolev as chief designer and Kerim Kerimov as his assistant.[4] This in turn triggered the Space Race between the Soviet Union and the United States.
Sputnik 1 helped to identify the density of high atmospheric layers through measurement of its orbital change and provided data on radio-signal distribution in the ionosphere. Because the satellite's body was filled with pressurized nitrogen, Sputnik 1 also provided the first opportunity for meteoroid detection, as a loss of internal pressure due to meteoroid penetration of the outer surface would have been evident in the temperature data sent back to Earth. The unanticipated announcement of Sputnik 1's success precipitated the Sputnik crisis in the United States and ignited the so-called Space Race within the Cold War.
Sputnik 2 was launched on November 3, 1957 and carried the first living passenger into orbit, a dog named Laika.[5]
In May, 1946, Project RAND had released the Preliminary Design of a Experimental World-Circling Spaceship, which stated, "A satellite vehicle with appropriate instrumentation can be expected to be one of the most potent scientific tools of the Twentieth Century.[6] The United States had been considering launching orbital satellites since 1945 under the Bureau of Aeronautics of the United States Navy. The United States Air Force's Project RAND eventually released the above report, but did not believe that the satellite was a potential military weapon; rather, they considered it to be a tool for science, politics, and propaganda. In 1954, the Secretary of Defense stated, "I know of no American satellite program."[7]
On July 29, 1955, the White House announced that the U.S. intended to launch satellites by the spring of 1958. This became known as Project Vanguard. On July 31, the Soviets announced that they intended to launch a satellite by the fall of 1957.
Following pressure by the American Rocket Society, the National Science Foundation, and the International Geophysical Year, military interest picked up and in early 1955 the Air Force and Navy were working on Project Orbiter, which involved using a Jupiter C rocket to launch a satellite. The project succeeded, and Explorer 1 became the United States' first satellite on January 31, 1958.[8]
In June 1961, three-and-a-half years after the launch of Sputnik 1, the Air Force used resources of the United States Space Surveillance Network to catalog 115 Earth-orbiting satellites.[9]
The largest artificial satellite currently orbiting the Earth is the International Space Station.
Space Surveillance Network
The United States Space Surveillance Network (SSN) has been tracking space objects since 1957 when the Soviets opened the space age with the launch of Sputnik I. Since then, the SSN has tracked more than 26,000 space objects orbiting Earth. The SSN currently tracks more than 8,000 man-made orbiting objects. The rest have re-entered Earth's turbulent atmosphere and disintegrated, or survived re-entry and impacted the Earth. The space objects now orbiting Earth range from satellites weighing several tons to pieces of spent rocket bodies weighing only 10 pounds. About seven percent of the space objects are operational satellites (i.e. ~560 satellites), the rest are space debris.[10] USSTRATCOM is primarily interested in the active satellites, but also tracks space debris which upon reentry might otherwise be mistaken for incoming missiles. The SSN tracks space objects that are 10 centimeters in diameter (baseball size) or larger.
Non-Military Satellite Services
There are three basic categories of non-military satellite services:[11]
Fixed Satellite Service
Fixed satellite services handle hundreds of billions of voice, data, and video transmission tasks across all countries and continents between certain points on the earth’s surface.
Mobile Satellite Systems
Mobile satellite systems help connect remote regions, vehicles, ships, people and aircraft to other parts of the world and/or other mobile or stationary communications units, in addition to serving as navigation systems.
Scientific Research Satellite (commercial and noncommercial)
Scientific research satellites provide us with meteorological information, land survey data (e.g., remote sensing), and other different scientific research applications such as earth science, marine science, and atmospheric research.
Types
MILSTAR: A communication satelliteAnti-Satellite weapons/"Killer Satellites" are satellites that are armed, designed to take out enemy warheads, satellites, other space assets. They may have particle weapons, energy weapons, kinetic weapons, nuclear and/or conventional missiles and/or a combination of these weapons.
Astronomical satellites are satellites used for observation of distant planets, galaxies, and other outer space objects.
Biosatellites are satellites designed to carry living organisms, generally for scientific experimentation.
Communications satellites are satellites stationed in space for the purpose of telecommunications. Modern communications satellites typically use geosynchronous orbits, Molniya orbits or Low Earth orbits.
Miniaturized satellites are satellites of unusually low weights and small sizes.[12] New classifications are used to categorize these satellites: minisatellite (500–200 kg), microsatellite (below 200 kg), nanosatellite (below 10 kg).
Navigational satellites are satellites which use radio time signals transmitted to enable mobile receivers on the ground to determine their exact location. The relatively clear line of sight between the satellites and receivers on the ground, combined with ever-improving electronics, allows satellite navigation systems to measure location to accuracies on the order of a few meters in real time.
Reconnaissance satellites are Earth observation satellite or communications satellite deployed for military or intelligence applications. Little is known about the full power of these satellites, as governments who operate them usually keep information pertaining to their reconnaissance satellites classified.
Earth observation satellites are satellites intended for non-military uses such as environmental monitoring, meteorology, map making etc. (See especially Earth Observing System.)
Space stations are man-made structures that are designed for human beings to live on in outer space. A space station is distinguished from other manned spacecraft by its lack of major propulsion or landing facilities — instead, other vehicles are used as transport to and from the station. Space stations are designed for medium-term living in orbit, for periods of weeks, months, or even years.
Tether satellites are satellites which are connected to another satellite by a thin cable called a tether.
Weather satellites are primarily used to monitor Earth's weather and climate.[13]
Orbit types
It has been suggested that this article or section be merged into List of orbits. (Discuss)
Main article: List of orbits
Various earth orbits to scale; cyan represents low earth orbit, yellow represents medium earth orbit, the black dashed line represents geosynchronous orbit, the green dash-dot line the orbit of Global Positioning System (GPS) satellites, and the red dotted line the orbit of the International Space Station (ISS).The first satellite, Sputnik 1, was put into orbit around Earth and was therefore in geocentric orbit. By far this is the most common type of orbit with approximately 2456 artificial satellites orbiting the Earth. Geocentric orbits may be further classified by their altitude, inclination and eccentricity.
The commonly used altitude classifications are Low Earth Orbit (LEO), Medium Earth Orbit (MEO) and High Earth Orbit (HEO). Low Earth orbit is any orbit below 2000 km, and Medium Earth Orbit is any orbit higher than that but still below the altitude for geosynchronous orbit at 35786 km. High Earth Orbit is any orbit higher than the altitude for geosynchronous orbit.
Centric classifications
Galactocentric orbit: An orbit about the center of a galaxy. Earth's sun follows this type of orbit about the galactic center of the Milky Way.
Heliocentric orbit: An orbit around the Sun. In our Solar System, all planets, comets, and asteroids are in such orbits, as are many artificial satellites and pieces of space debris. Moons by contrast are not in a heliocentric orbit but rather orbit their parent planet.
Geocentric orbit: An orbit around the planet Earth, such as the Moon or artificial satellites. Currently there are approximately 2465 artificial satellites orbiting the Earth.
Areocentric orbit: An orbit around the planet Mars, such as moons or artificial satellites.
Altitude classifications
Low Earth Orbit (LEO): Geocentric orbits ranging in altitude from 0–2000 km (0–1240 miles)
Medium Earth Orbit (MEO): Geocentric orbits ranging in altitude from 2000 km (1240 miles) to just below geosynchronous orbit at 35786 km (22240 miles). Also known as an intermediate circular orbit.
High Earth Orbit (HEO): Geocentric orbits above the altitude of geosynchronous orbit 35786 km (22240 miles).
Orbital Altitudes of several significant satellites of earth.
Inclination classifications
Inclined orbit: An orbit whose inclination in reference to the equatorial plane is not zero degrees.
Polar orbit: An orbit that passes above or nearly above both poles of the planet on each revolution. Therefore it has an inclination of (or very close to) 90 degrees.
Polar sun synchronous orbit: A nearly polar orbit that passes the equator at the same local time on every pass. Useful for image taking satellites because shadows will be nearly the same on every pass.
Sunday, February 8, 2009
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment